Design of Chitosan-Grafted Carbon Nanotubes: Evaluation of How the –OH Functional Group Affects Cs+ Adsorption

نویسندگان

  • Shubin Yang
  • Dadong Shao
  • Xiangke Wang
  • Guangshun Hou
  • Masaaki Nagatsu
  • Xiaoli Tan
  • Xuemei Ren
  • Jitao Yu
  • David Harding
چکیده

In order to explore the effect of -OH functional groups in Cs+ adsorption, we herein used the low temperature plasma-induced grafting method to graft chitosan onto carbon nanotubes (denoted as CTS-g-CNTs), as raw-CNTs have few functional groups and chitosan has a large number of -OH functional groups. The synthesized CTS-g-CNT composites were characterized using different techniques. The effect of -OH functional groups in the Cs+ adsorption process was evaluated by comparison of the adsorption properties of raw-CNTs with and without grafting chitosan. The variation of environmental conditions such as pH and contact time was investigated. A comparison of contaminated seawater and simulated groundwater was also evaluated. The results indicated that: (1) the adsorption of Cs+ ions was strongly dependent on pH and the competitive cations; (2) for CNT-based material, the -OH functional groups have a positive effect on Cs+ removal; (3) simulated contaminated groundwater can be used to model contaminated seawater to evaluate the adsorption property of CNTs-based material. These results showed direct observational evidence on the effect of -OH functional groups for Cs+ adsorption. Our findings are important in providing future directions to design and to choose effective material to remedy the removal of radioactive cesium from contaminated groundwater and seawater, crucial for public health and the human social environment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solid Phase Extraction of Amount Cu(II) Using C18 Disks Modified Schiff Base-Chitosan Grafted Multiwalled Carbon Nanotubes

A novel and selective method for the fast determination of trace amounts of Cu(II) ions in water samples has been developed. The procedure is based on the selective formation of Cu(II) at optimum pH by elution with organic eluents and determination by flame atomic absorption spectrometry. The method is based on complex formation on the surface of the ENVI-18 DISKTM disks modified Schiff base-ch...

متن کامل

Solid Phase Extraction of Amount Cu(II) Using C18 Disks Modified Schiff Base-Chitosan Grafted Multiwalled Carbon Nanotubes

A novel and selective method for the fast determination of trace amounts of Cu(II) ions in water samples has been developed. The procedure is based on the selective formation of Cu(II) at optimum pH by elution with organic eluents and determination by flame atomic absorption spectrometry. The method is based on complex formation on the surface of the ENVI-18 DISKTM disks modified Schiff base-ch...

متن کامل

Effect of Acid Treatment of Carbon Nanotubes on Their Adsorption Capacities of Benzene and Toluene

Toluene and benzene were eliminated using multi-walled carbon nanotubes (MWCNTs). In order to investigate influence of acid treatment on the MWCNTs adsorption capacities, the MWCNTs were functionalized by nitric acid (10 M) under reflux conditions for 2 h. Fourier transform infrared (FTIR) and Raman spectroscopy were employed to confirm the formation of functional groups on the nanotubes su...

متن کامل

An Evaluation of the Adsorption Potential of MWCNTs for Benzene and Toluene Removal

In order to evaluate the adsorption potential of multi-walled carbon nanotubes (MWCNTs) for benzene, toluene and xylenes (BTX), the adsorption capacities of benzene and toluene on two different MWCNTs were measured using a gas-chromatography (GC) and then compared with each other. Fourier transform infrared (FTIR) was employed to investigate the presence of f...

متن کامل

Statistical Modeling of Adsorption and Selectivity of the Binary Gases of CO2 /CH4 , CH4 /H2 and CO2 /H2 on MWCNT-OH

Equilibrium adsorption property of multi-walled carbon nanotubes with OH group was studied using experimental design for the adsorption of CO2 , CH4 and H2 . The effect of temperature, pressure, their binary interactions and quadratic terms were studied for adsorption capacity of nanotubes and the results were analyzed by the face centered central composite design method and analysis of varianc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2015